Schwingungsspektren einiger halogenhaltiger Di- und Trisilylamine

Von

H. Bürger

Aus dem Institut für Anorganische Chemie der Technischen Hochschule Braunschweig

(Eingegangen am 21. März 1966)

Die IR- und Raman-Spektren von $[F(CH_3)_2Si]_2NH$ (1), $[Cl(CH_3)_2Si]_2NH$ (2), $Cl(CH_3)_2SiNHSiCl_3$ (3), $[Cl(CH_3)_2Si]_2NCH_3$ (4) und $[Cl(CH_3)_2Si]_3N$ (5) wurden aufgenommen und zugeordnet. Verglichen mit $[(CH_3)_3Si]_2NH$ und $[(CH_3)_3Si]_2NCH_3$ ist in 1, 2, 3 und 4 die SiN-Valenzkraftkonstante um 0,1—0,5 mdyn/Å verstärkt.

The IR and Raman spectra of 1—5 were recorded and assigned. Compared with [(CH₃)₃Si]₂NH and [(CH₃)₃Si]₂NCH₃, respectively, the SiN valence force constants of 1, 2, 3 and 4 are increased by an amount of 0,1 to 0,5 mdynes/Å.

In der Silicium—Stickstoff-Chemie beansprucht die Frage nach der Beeinflussung der SiN-Bindungsstärke durch N- und Si-Substituenten ein besonderes Interesse, nachdem theoretische Überlegungen und experimentelle Tatsachen es sehr wahrscheinlich machen, daß die SiN- σ -Bindung durch überlagerte $(p \rightarrow d) \pi$ -Wechselwirkungen des N-Elektronenpaares mit Si-d-Bahnen verstärkt werden kann¹. Aussagen über das Ausmaß solcher Bindungsverstärkungen lassen sich außer aus Röntgenstruktur- und Kernresonanzuntersuchungen besonders auch aus den Schwingungsspektren ableiten².

¹ Literatur hierzu z. B. in *U. Wannagat*, The Chemistry of Silicon-Nitrogen Compounds; Adv. Inorg. Chem. and Radiochem. 6, 225, New York 1964.

² Neuerdings mehren sich Hinweise, daß eine SiN-Abstandsverkürzung und Umhybridisierung des N-Atoms $(sp^3 \rightarrow sp^2 \text{ und } sp^2 \rightarrow sp)$ nicht immer mit einer Erhöhung der NSi-Valenzkraftkonstanten parallel läuft, s. z. B. H. Bürger, Mh. Chem. 96, 1710 (1965); N. Wiberg und B. Neruda, Chem. Ber. 99, 740 (1966).

Da aber SiN-Valenzschwingungen [anders als z. B. SiH-Schwingungen] je nach Molekülgeometrie und Kopplungseffekten zwischen 1100 $\{v_{as} \text{ SiNSi} \text{ im KN[Si(CH_3)_3]_2}\}$ und 380 cm⁻¹ $[v_s \text{ SiN_4} \text{ im Si(NCS)_4}]$ aufgefunden werden, sind sie zu direkten Folgerungen über die SiN-Bindung ungeeignet. Es ist vielmehr erforderlich, aus den vollständigen Molekülspektren SiN-Kraftkonstanten zu berechnen und diese miteinander zu vergleichen.

Als Beitrag zu der Frage, ob die Lage der SiN-Schwingung und damit die SiN-Valenzkraftkonstante, die ein Maß für die Elektronendichte in der SiN-Bindung ist, durch elektronegative Si-Substituenten beeinflußt wird, soll im folgenden über die Schwingungsspektren einer Reihe halogenhaltiger Di- und Trisilylamine berichtet werden, die in letzter Zeit im Rahmen präparativer Untersuchungen zugänglich geworden sind³.

Im einzelnen werden die Spektren von

F(CH₃)₂SiNHSi(CH₃)₂F (1)⁴ Cl(CH₃)₂SiNHSi(CH₃)₂Cl (2)⁵ Cl(CH₃)₂SiNHSiCl₃ (3)⁶ Cl(CH₃)₂SiN(CH₃)Si(CH₃)₂Cl (4)⁷ [Cl(CH₃)₂Si]₃N (5)⁸

ausgedeutet und die Lage der SiN-Schwingungen verglichen mit jener in $(CH_3)_3SiNSi(CH_3)_3$ (6), $(CH_3)_3SiN(CH_3)Si(CH_3)_3$ (7) und $[(CH_3)_3Si]_3N$ (8). Für 6—8 werden teils vollständige, teils angenäherte Kraftkonstantenrechnungen vorgelegt.

Schwingungsspektren

Während sich bei allen Verbindungen die Valenzschwingungen aus IR- und Raman-Spektren sicher zuordnen lassen, wobei man lediglich zu berücksichtigen hat, daß in 1, 2, 4 und 5 die SiC- und Si-Halogen-Valenzschwingungen verdoppelt auftreten, besteht im Bereich der Skelettdeformationen unterhalb $400~\rm cm^{-1}$ mangels Vergleichsmaterials in vielen Zuordnungsdetails noch Unsicherheit. Ebenso ist es schwierig, in 1, 2 und 3 die (Si)NH-Deformation aus der Ebene [γ NH; in Disilylaminen wird für das N-Atom allgemein sp^2 -Hybridisierung angenommen] zu lokalisieren, da diese Schwingung gewöhnlich als schwache bis mittlere IR-Bande im Bereich der vSiC und ρ (Si)CH₃ auftritt.

 $^{^{3}}$ Die Schwingungsspektren wurden an authentischen, analysenreinen Substanzen aufgenommen.

⁴ U. Wannagat und H. Bürger, Angew. Chem. 76, 497 (1964).

⁵ U. Wannagat, E. Bogusch und P. Geymayer, Mh. Chem. 95, 801 (1964).

⁶ U. Wannagat und P. Schmidt, unveröffentlicht.

⁷ U. Wannagat und G. Schreiner, Mh. Chem. **96**, 1895 (1965).

⁸ U. Wannagat und E. Bogusch, Inorg. Nucl. Chem. Letters, im Druck.

Im einzelnen sind die IR- und Raman-Spektren von 1—5 in Tab. 1 zusammengestellt und zugeordnet. Alle Schwingungen der $(CH_3)_2$ Si-Gruppe sind dabei weitgehend lagekonstant und durch Vergleich mit $(CH_3)_2$ SiCl₂ sowie ähnlichen Verbindungen und Tetramethyldisilazanen 9 zu erkennen.

SiN-Schwingungen. Alle Verbindungen zeigen zwei SiN-Valenzschwingungen: ν_{as} SiNSi bei 915—968 cm⁻¹ [starke IR-Bande] und ν_{s} SiNSi bei 555—650 cm⁻¹ [IR-Bande, starke, polarisierte Ramanlinie]. Wegen der anderen Schwingungsform läßt sich die Lage der NSi₃-Pulsation [414 cm⁻¹ in 5] nicht mit ν_{s} SiNSi vergleichen.

In allen Si₂NH-Verbindungen ist die Lage von ν_{as} SiNSi durch deren starke Kopplung mit δ (Si)NH [bei 1150—1200 cm⁻¹] zu höheren Wellenzahlen hin begrenzt¹⁰. Über 970 cm⁻¹ kann diese Schwingung nur in Verbindungen wie (R₃Si)₂NNH₂¹¹a, (H₃Si)₂NN(SiH₃)₂¹¹b, (R₃Si)₂N-MeN(SiR₃)₂ (Me = Zn, Cd, Hg)¹¹c und dem Anion [(R₃Si)₂N]⁶¹¹d, in denen eine solche Kopplung nicht mehr möglich ist, ansteigen. So ist eine induktive Verstärkung der SiN-Bindung nur von einem im Ausmaß viel geringeren Anstieg von ν_{as} SiN(H)Si begleitet: diese Schwingung steigt auch im (Cl₃Si)₂NH nicht höher als auf 963 cm⁻¹ an¹².

In CH₃NSi₂-Derivaten scheint ν_{as} SiNSi weitgehend ungekoppelt vorzuliegen: δ CNSi beobachtet man unterhalb 500 cm⁻¹, und ρ (N)CH₃ ist in Methylaminosilyl-Derivaten zu lagekonstant, als daß man mit einer starken mechanischen Kopplung von ρ (N)CH₃ und ν_{as} SiNSi rechnen müßte.

Ebenso wie die asymmetrische liegt auch die *symmetrische* SiNSi-Valenzschwingung in 4 deutlich unterhalb jener in 1, 2 und 3. ν_s SiNSi ist weniger kopplungsanfällig: Kraftkonstantenrechnungen (s. u.) sowie die häufige Nachbarschaft von ν_s SiC₃ bzw. ν_s SiC₂ mit ν_s SiNSi zeigen, daß das schwere Si-Atom weitgehend als Kopplungssperre wirkt.

Die SiN-Schwingungen von 5 entsprechen in ihrer Lage jenen im $[(CH_3)_3Si]_3N^{13}$ und $(H_3Si)_3N^{14}$: v_1-v_3 liegen bei 414-915-152 [430/

¹⁰ H. Bürger, Inorg. Nucl. Chem. Letters 1, 11 (1965).

¹² G. O. Gudmundsson, Dissertation, TH Stuttgart, 1964.

¹³ J. Goubeau und J. Jiménez-Barberá, Z. anorg. allgem. Chem. 303, 217 (1960).

⁹ H. Kriegsmann und G. Engelhardt, Z. anorg. allgem. Chem. 310, 320 (1961). In dieser Arbeit wird von 2 ein IR-Spektrum mitgeteilt und zugeordnet, das wegen der seinerzeitigen Schwierigkeiten, 2 rein zu erhalten, in unwesentlichen Details von dem hier mitgeteilten abweicht.

¹¹ a) U. Wannagat, F. Höfler und H. Bürger, Mh. Chem. 96, 2038 (1965); b) B. J. Aylett, J. R. Hall, D. C. McKean, R. Taylor und L. A. Woodward, Spectrochim. Acta 16, 747 (1960); c) H. Bürger, W. Sawodny und U. Wannagat, J. Organomet. Chem. 3, 113 (1965); d) U. Wannagat, H. Seyffert und H. Bürger, unveröffentlicht.

¹⁴ E. A. V. Ebsworth, J. R. Hall, M. J. MacKillop, D. C. McKean, N. Sheppard und L. A. Woodward, Spectrochim. Acta 13, 212 (1958); H. Kriegsmann und W. Förster, Z. anorg. allgem. Chem. 298, 212 (1959); D. W. Robinson, J. Amer. chem. Soc. 80, 5924 (1958).

Tabelle 1

IR I	Raman	IR 2	Raman	R 3	Raman	4 IR	IR 5	Raman	Zuordnung
3371 m	3372 stp	3355 s	3352 sp	3350 m	3359 st		: :		' NH
2969 st	2975 sst	2970 s	$2972 \mathrm{~st}$	$2950 \mathrm{\ s}$	2974 sst	$2958 \mathrm{\ st}$	$2968 \mathrm{\ st}$	2974 sst	$v_{ m as}$ CH $_3$
2910 ss	2910 sstp	2910 ss	$2907~\mathrm{sstp}$		2908 sst	$2901~\mathrm{m}$	$2905 \mathrm{\ st}$	2912 sst	$v_{\rm s}$ CH ₃ (Si)
	•		•			$2826\mathrm{m}$			$v_{\rm s}$ CH ₃ (N)
						1458 s			$\delta_{as} \operatorname{CH}_3(\mathrm{N})$
					1437 s				$\delta_{as} \operatorname{CH}_3(\operatorname{Si})$
1410 s		1410 ss	$1410 \mathrm{m}$	$1400 \mathrm{s}$	$1400 \mathrm{m}$	1400 s	$1405 \mathrm{\ st}$	$1414 \mathrm{m}$	
1270 sst	1271 s	$1265 \mathrm{\ sst}$	1267 s	1265 sst	1267 sp	1259 sst	1261 sst	$1261 \mathrm{s}$	$\delta_{\rm s}$ CH ₃ (Si)
					4	1191 st			_
$1200 \mathrm{\ st}$!	1200 st	1	$1150~\mathrm{sst}$					8 (Si)NH
						1057 sst			c CN
965 sst	88096	$952~\mathrm{sst}$	960 ss	$968 \mathrm{\ sst}$	8 696	$925~\mathrm{sst}$	$915~\mathrm{sst}$	-	$v_{as} \operatorname{Si}_2 N$
890 sst	$892 \mathrm{~ss}$								v SiF
877 sst		870 st		$850~\mathrm{sst}$	853 s	856 st	$840~\mathrm{m}$	823 s	
	830 ss	832 sst		824 sst		$832~\mathrm{sst}$	810 sst	798 ss	$\left\{ \begin{array}{ll} \wp & \mathrm{CH_3(Si)} \end{array} \right.$
819 sst		810 sst	818 ss			$810 \mathrm{\ sst}$		782 ss	
689 ss		691 ss		756 ss	757 ss				γ (Si)NH
$790~\mathrm{m}$	$790 \mathrm{\ s}$	785 m	788 s	$806 \mathrm{sst}$	808 ss	$_{790 \mathrm{s}}$	$748 \mathrm{m}$		vas SiC ₂ out of phase
	$703~\mathrm{mp}$		$712\mathrm{mp}$			750 ss	$695~\mathrm{m}$	707 st	in phase

Tabelle 1a

	ohase e 5) cNSi]
Zuordnung	vs SiC2 out of phase in phase vs Si2N(Si3N in 5) vas SiC13 vs SiC13 v SiC1 out of phase v SiC1 in phase cosiF, FSiN cosiN,CSiC1 [& CNSi] cosiN,CSiC2 cosiN,CSiC3 c
Raman	696 st 674 s 414 sst 531 ss 482 s 370 ss 174 st 243 s 152 m
IR 5	670 st 661 mSch
4 IR	698 m 670 st 555 st 476 sst 459 st 364 m [] 258 s
Raman	710 sp 651 stp 590 m 461 sstp 488 stp 341 stp 251 ss 170 m 200 s 150 m 225 st 131 st 89 sp
IR 3	720 ss 652 st 590 sst 465 st 486 st
Raman	671 s 616 stp 465 sstp 360 mp 170 m 236 sp 152 mp
IR 2	668 st 614 m 478 sst 390 s 375 ss 258 m 216 m 150 s
Raman	651 sp 600 sstp 480 ss 394 sp 290 ss 200 st
IR II	770 m 648 st 615 s 475 m 395 ss 380 m 329 m 210 s 290 ss 195 s

496—916/996—175/204] cm $^{-1}$. Bei 5 fällt auf, daß weder ν_1 im IR-Spektrum noch ν_2 im Ramaneffekt beobachtet werden konnten. Die Einhaltung des für ein planares NSi₃-Gerüst [Lokalsymmetrie D_{3h}] erwarteten Alternativverbotes von ν_1 ist ein Argument, jedoch kein Beweis für eine sp 2 -Hybridisierung des N-Atoms.

Die NSi_2 [bzw. ebene NSi_3]-Deformationsschwingung wird meistens mit einer Ramanlinie bei $150-200~\rm cm^{-1}$ belegt. Da noch keine eingehenden Untersuchungen dieser Schwingung vorliegen, ist diese Zuordnung zwar plausibel, aber nicht zwingend.

Die SiCl-Schwingungen geben sich durch intensive Banden klar zu erkennen. Bemerkenswert ist in 2, 4 und 5 die weitreichende Kopplung der beiden v SiCl über die SiNSi-Brücke hinweg. Ihre Lage entspricht der SiCl-Schwingung im (CH₃)₃SiCl [478 cm⁻¹ ¹⁵].

Die SiCl₃-Gruppe in **3** gibt nur zu zwei Valenzschwingungen bei 590 und 461 [HSiCl₃ 587/489] cm⁻¹ Anlaß; eine Rotationsbehinderung um die SiN-Achse wie im $(CH_3)_2NSiCl_3^{16}$ liegt demzufolge nicht vor.

Kraftkonstantenrechnungen

Die Frage, ob in den halogenhaltigen Di- und Trisilylaminen die SiN-Bindung gegenüber 6, 7 und 8 verstärkt ist, läßt sich nur durch Kraftkonstantenrechnungen klären. Da aber 1—5 für eine vollständige Berechnung zu vielatomig und wenig symmetrisch sind, sollen an einfacheren Molekülen Näherungsprinzipien abgeleitet werden, die auch für andere SiN-Verbindungen Gültigkeit besitzen und miteinander vergleichbare Aussagen über die SiN-Valenzkraftkonstanten ermöglichen.

Da den Di- und Trimethylsilylverbindungen in der Organosiliciumchemie eine besondere Bedeutung zukommt, wurden solche Modellrechnungen am (CH₃)₃SiNHSi(CH₃)₃ (6) mit verschiedenen Potentialansätzen durchgeführt.

Das Schwingungsspektrum von $\bf 6$ ist von verschiedenen Autoren $^{10,~13,~17,~18}$ untersucht worden. Folgende Zuordnung erscheint für das $(C_3Si)_2NH$ -Gerüst [Abweichungen beim $(C_3Si)_2ND$ in Klammern] am wahrscheinlichsten:

```
ν NH 3376 [2500]; δ (Si)NH 1177 [825]; ν<sub>as</sub> SiNSi 934 [1030];
```

 $\nu_{as}~{\rm SiC_3}~683\,;~\nu_{s}~{\rm SiC_3}~667~{\rm R}/620~{\rm IR}\,;~\nu_{s}~{\rm SiNSi}~567\,;~\rho~{\rm SiC_3} \equiv$

 δ NSiC 350; δ_{as} SiC₃ 248; δ_{s} SiC₃ 195; δ SiNSi 171 [180].

¹⁵ A. L. Smith, Spectrochim. Acta 19, 849 (1963).

¹⁶ Hier beobachtet man 3 SiCl₃-Valenzschwingungen [H. Bürger und W. Sawodny, unveröffentlicht].

¹⁷ C. C. Cerato, J. L. Lauer und H. C. Beachell, J. chem. Physics 22, 1 (1954).

¹⁸ H. Kriegsmann, Z. Elektrochem. **61**, 1088 (1957).

Bisher wurde eine Kraftkonstantenrechnung 18 nur für das Dreimassensystem SiNSi durchgeführt und jedes Si-Atom zusätzlich mit einem Drittel der Trimethylmasse belegt. Für einen SiNSi-Winkel von 131° ist f' SiN = 0; f SiN beträgt 3,84 mdyn/Å.

Die vollständige Berechnung ¹⁹ unter Annahme von NH und CH₃ als Massenpunkt liefert aus den ebenen Schwingungen A_1 und B_1 bei C_{2V}^- Symmetrie für das C₃SiNSiC₃-Gerüst unter Variation des SiNSi-Winkels zwischen 130 und 150° die in Tab. 2 zusammengefaßten Valenzkraft-, Wechselwirkungs- und Deformationskonstanten.

Nun wurde für das SiNSi-System aus den drei SiN-Schwingungen mit den Formeln für das gewinkelte Dreimassenmodell²⁰ einmal mit 28 als Trimethylsilylmasse (a), dann analog ⁹ bzw. ¹⁸ mit 43,1 [m Si + 1 /₃ m (CH₃)₃, (b)] bei gleichen SiNSi-Winkeln die Rechnung wiederholt (Tab. 3).

SiNSi-Winkel	130°	140°	150°
f SiN	3,09	3,35	3,58
t' SiN	-0.28	0,15	0.49
f SiC	2,56	2,57	2,58
f' SiC	0,24	0,25	0,26
d SiNSi a	0.44	0,41	0.24

Tabelle 2

Tabelle 3

	SiNSi-Winkel	130°	140°	150°
$m \operatorname{Si(CH_3)_3} = 28$ (a)	f SiN f' SiN d SiNSi/ $(r$ SiN) 2	3,25 $-0,28$ $0,09$	3,46 0,12 0,08	3,68 0,48 0,07
$m \mathrm{Si}(\mathrm{CH_3})_3 = 43.1$ (b)	$f ext{ SiN} \ f' ext{ SiN} \ d ext{ SiNSi/}(r ext{ SiN})^2$	$ \begin{array}{r} 3,80 \\ -0.08 \\ 0.12 \end{array} $	4,15 0,50 0,10	4,74 1,13 0,08

Die unter (a) erhaltenen Werte stimmen mit denen aus Tab. 2 erstaunlich gut überein; die nach (b) errechneten weichen wesentlich ab. Diese Ergebnisse sagen aus, daß in C₃SiN-Verbindungen nur eine unbedeutende Kopplung der C₃Si-Schwingungen mit den SiN-Schwingungen auftritt;

a normiert auf den SiC-Abstand

 $^{^{19}}$ Lösung der Säkulargleichung nach einem von W. Sawodny, A. Fadini und K. Ballein, Spectrochim. Acta 21, 995 (1965), beschriebenen Iterationsverfahren.

²⁰ K. W. F. Kohlrausch, Der Smekal-Raman-Effekt, Berlin 1938.

die Masse des Si-Atoms ist so groß, daß es weitgehend als "Kopplungsbremse" wirkt. Dies äußert sich auch in der Größe der CSi/SiN-Kopplungskonstanten, die allgemein 0,3 mdyn/Å nicht übersteigen.

Selbst bei Cl₃SiN-Verbindungen erhält man nach diesem Prinzip noch brauchbare SiN-Valenzkraftkonstanten, wie ein Vergleich der für ein Neunmassensystem vollständig (i) [Werte aus 12] sowie für ein Dreimassensystem mit $\nu_1 - \nu_3$ 595—146—963 cm $^{-1}$ für SiNSi-Winkel von 130 und 140° abgekürzt (ii) berechneten Werte zeigt:

$$130^{\circ} f \sin 3,49 f' \sin -0,19$$
 $140^{\circ} f \sin 3,67 f' \sin 0,19$ (i) $3,37$ $0,02$ $3,78$ $0,41$ (ii)

Die Abweichungen übersteigen in keinem Fall 0,2 mdyn/Å.

So lassen sich an Si₂NH-Verbindungen (1—4) schon aus der Lage der beiden SiN-Valenzschwingungen vergleichende Aussagen über die Größe der SiN-Valenzkraftkonstanten machen. Die Absolutgröße der SiN-Valenzkraftkonstanten des Hexamethyldisilazans kann Tab. 2 noch nicht direkt entnommen werden, da sowohl der SiNSi-Winkel unbekannt ist als auch die Kopplung mit δ (Si)NH unberücksichtigt blieb. Setzt man f' SiN zu ca. 10% von f SiN an und kompensiert die Kopplungseffekte durch Übernahme der "entkoppelten" $\nu_{\rm as}$ SiNSi zu 982 cm^{-1 10}, dann erhält man für den wahrscheinlichsten SiNSi-Winkel von 140—150° eine SiN-Valenzkraftkonstante von 3,5 \pm 0,1 mdyn/Å.

Ähnliche Überlegungen gelten für das 4 verwandte [(CH₃)₃Si]₂NCH₃(7). Hier errechnen sich für ein CNSi₂-Viermassensystem aus den Normalschwingungen^{13, 18} v CN 1065 ²¹, $\nu_{\rm s}$ Si₂N 505, δ Si₂N 183, $\nu_{\rm as}$ Si₂N 906 und δ SiNC 277 cm⁻¹ nach¹⁹ folgende Kraftkonstanten:

SiNSi-Winkel 130°.
$$f$$
 SiN 3,21 f' SiN 0,07 f CN 4,62 140° 3,27 0,30 4,64

Durch das noch nicht vollständig berechnete [(CH₃)₃Si]₃N erhält man mit den Formeln für den ebenen Stern bzw. die trigonale Pyramide²⁰ mit der Zuordnung 438—916—175²² je nach Pyramidenwinkel β folgende Resultate:

Wegen der stark negativen Werte für f' SiN sind die nichtplanaren Modelle weniger wahrscheinlich.

 $^{^{21}}$ Den Rechnungen zufolge ist die Zuordnung v $\rm CN=1065~cm^{-1}~^{13}$ wahrscheinlicher als $1186~cm^{-1}~^{18}.$

 $^{^{22}}$ Das bekannte Spektrum von 8 wurde durch Neuaufnahmen des Ramanspektrums ergänzt. Unterhalb 500 cm $^{-1}$ liegen folgende Gerüstschwingungen: 438 $\nu_{\rm s}{\rm Si}_{\rm 3}{\rm N},~350~\rho~{\rm SiC}_{\rm 3},~279~\delta_{\rm as}{\rm SiC}_{\rm 3},~198~\delta_{\rm s}~{\rm SiC}_{\rm 3},~175~{\rm cm}^{-1}~\delta~{\rm Si}_{\rm 3}{\rm N}$ in — der — Ebene.

Diskussion

Die Frage, ob der Ersatz von CH₃-Gruppen durch Halogenatome in Silylaminen eine Verstärkung der SiN-Bindung bewirkt, läßt sich durch Vergleich der Lage der SiN-Valenzschwingungen (Tab. 4), wie er oben gerechtfertigt wurde, zumindest für die *Disilylamine* in Übereinstimmung mit⁹ bejahen. Wenn auch die Absolutwerte der SiN-Kraftkonstanten von 1—3 wegen der Unkenntnis der "wahren" vas SiNSi²³ nicht besonders zuverlässig sind, so zeigt der Vergleich mit den halogenfreien Grundsubstanzen doch, mit welcher Erhöhung der SiN-Valenzkraftkonstanten man mindestens zu rechnen hat.

N-Methyl- (7, 4) und N-Silylgruppen (8, 5) bedingen gegenüber 6 eine Schwächung der SiN-Bindung. Bezieht man noch di: zu 4,0 mdyn/Å berechnete SiN-Kraftkonstante ²⁴ des $(C_2H_5)_3$ SiNH₂ mit in die Betrachtungen ein, so gibt die Reihe R_3 SiNH₂ 4,0, $(R_3$ Si)₂NH 3,5, $(R_3$ Si)₃N 3,2 mdyn/Å das mit steigender Zahl gebundener Silylgruppen sinkende Ausmaß an $(p \rightarrow d)$ π -Verstärkung je SiN-Bindung gegenüber dem Einfachbindungswert [2,92 mdyn/Å nach Gordy] deutlich zu erkennen.

\mathbf{T}	я.	b	e	1	1	е	4

	ν _{as} Si₂N	$\nu_8 \mathrm{Si}_8 \mathrm{N} (\mathrm{Si}_8 \mathrm{N})$	f SiN	f' SiN	SiNSi-Winkel
(CH ₃) ₃ SiNHSi(CH ₃) ₃ (6) F(CH ₃) ₂ SiNHSi(CH ₃) ₂ F (1) Cl(CH ₃) ₂ SiNHSi(CH ₃) ₂ Cl (2) Cl ₃ SiNHSi(CH ₃) ₂ Cl (3)	934 cm ⁻¹ 965 952 968	567 cm ⁻¹ 600 616 651	3,46 a 3,77 a 3,86 a 4,07 a	0,12 0,20 0,38 0,21	140° 140° 140° 130°
$\begin{array}{l} (\mathrm{CH_3})_3\mathrm{SiN}(\mathrm{CH_3})\mathrm{Si}(\mathrm{CH_3})_3 \ \ (7) \\ \mathrm{Cl}(\mathrm{CH_3})_2\mathrm{SiN}(\mathrm{CH_3})\mathrm{Si}(\mathrm{CH_3})_2\mathrm{Cl} \ \ (4) \end{array}$	$906 \\ 925$	505 555	$^{3,27\mathrm{b}}_{3,34\mathrm{c}}$	$\substack{0,30\\0,35}$	140° 140°
$[(CH_3)_3Si]_3N$ (8) $[Cl(CH_3)_2Si]_3N$ (5)	916 915	$\begin{array}{c} 438 \\ 414 \end{array}$	3,20 d = 3,09 d =		120° 120°

a ohne Berücksichtigung der Kopplung mit δ (Si)NH, Dreimassenmodell

Die niedrige Lage von ν_8 Si₃N in 5 dürfte die Folge einer mäßigen Kopplung mit der gleichphasigen ν SiCl sein; die wahre SiN-Valenzkraftkonstante wird für 5 kaum unter jener von 8 liegen. Daß die erwartete Verstärkung ausbleibt, legt nahe, daß in 5 ebenso wie in 8 die räumliche Anordnung der Silylgruppen keine weitergehende Bindungsverstärkung zuläßt.

b Viermassenmodell C_{2v} nach 19 c) Viermassenmodell C_{2v} nach 20

c Viermassenmodell D_{3h} nach 20

²³ Versuche, aus 1 und D_2O durch H—D-Austausch N-deuteriertes 1 darzustellen, führten unter Spaltung der SiN-Bindung zu [(CH₃)₂SiO]n.

 $^{^{24}}$ Berechnet nach 19 mit ν_8 NH₂ 3401, δ NH₂ 1552, ν_8 SiC₃ 574 und δ SiC₃ 330 cm $^{-1}$ 10

Experimentelles

Alle Raman-Spektren wurden mit einem selbstregistrierenden Cary 81-Gerät von den Reinsubstanzen in 7 mm-Rohren aufgenommen und Polarisationszustände mit Hilfe verschieden polarisierter Polaroidfolien bestimmt.

5 lag in festem Zustand vor. Zur Registrierung der IR-Spektren im Gitter-NaCl-Bereich sowie von 1, 2 und 4 im CsBr-Bereich diente ein Perkin-Elmer-221-Spektrograph. 4 und 5 wurden im KBr-Bereich mit einem Leitz-IR-Spektrographen, 1 und 2 zusätzlich im Bereich von 600 — 33 cm⁻¹ zwischen Polyäthylenfenstern bei Schichtdicken bis zu 1 mm mit einem Beckman IR 11-Gerät vermessen.

Mein herzlicher Dank gilt Herrn Professor Dr. U. Wannagat und seinen Mitarbeitern für die Bereitstellung der Substanzproben, den Herren Professor Dr. H. J. Becher und Dr. W. Sawodny für ihre wertvollen Ratschläge. Der D.F.G. danke ich für die Möglichkeit, die Ramangeräte in Stuttgart und Braunschweig zu benutzen, sowie für ein Stipendium.